detect-track-poc/acquire-camera.py

101 lines
3.3 KiB
Python

import cv2
import dlib
import time # To measure time for FPS calculation
# GStreamer pipeline to acquire video from the CSI camera (Jetson Nano)
def gstreamer_pipeline(
sensor_id=0,
capture_width=1280,
capture_height=720,
display_width=640,
display_height=360,
framerate=15,
flip_method=0,
):
return (
f"nvarguscamerasrc sensor-id={sensor_id} ! "
f"video/x-raw(memory:NVMM), width=(int){capture_width}, height=(int){capture_height}, "
f"format=(string)NV12, framerate=(fraction){framerate}/1 ! "
f"nvvidconv flip-method={flip_method} ! "
f"video/x-raw, width=(int){display_width}, height=(int){display_height}, format=(string)BGRx ! "
f"videoconvert ! video/x-raw, format=(string)BGR ! appsink"
)
# Capture from the camera using OpenCV and start tracking
cap = cv2.VideoCapture(gstreamer_pipeline(), cv2.CAP_GSTREAMER)
if not cap.isOpened():
print("Unable to open camera")
else:
# Read the first frame to allow user to draw a bounding box
ret, frame = cap.read()
if not ret:
print("Failed to grab the initial frame")
cap.release()
# Let the user draw the initial bounding box
bbox = cv2.selectROI("Select ROI", frame, fromCenter=False, showCrosshair=True)
# Initialize Dlib correlation tracker
tracker = dlib.correlation_tracker()
tracker.start_track(frame, dlib.rectangle(bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]))
img_counter = 0 # To count frames and name images
frame_counter = 0 # To track the number of frames
start_time = time.time() # Start time for FPS calculation
try:
while True:
ret, frame = cap.read()
if not ret:
print("Failed to grab frame")
break
# Start measuring time per frame
frame_start_time = time.time()
# Update the tracker with the current frame
tracker.update(frame)
pos = tracker.get_position()
# Extract the bounding box from the tracker
x1, y1, x2, y2 = int(pos.left()), int(pos.top()), int(pos.right()), int(pos.bottom())
# Draw the updated tracking bounding box on the frame
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Show the frame with the tracking rectangle
cv2.imshow("Tracking", frame)
# Save every 10th frame
if frame_counter % 10 == 0:
img_name = f"tracked_frame_{img_counter}.jpg"
cv2.imwrite(img_name, frame)
print(f"Saved {img_name}")
img_counter += 1
# Calculate and print FPS
frame_time = time.time() - frame_start_time
fps = 1.0 / frame_time
print(f"FPS: {fps:.2f}")
frame_counter += 1
# Exit if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
print("Tracking interrupted by user")
cap.release()
cv2.destroyAllWindows()
# Calculate and print average FPS over all frames
end_time = time.time()
total_time = end_time - start_time
average_fps = frame_counter / total_time
print(f"Average FPS: {average_fps:.2f}")
print("Finished tracking")